Second Order Behavior of Pattern Search Algorithms
نویسنده
چکیده
Abstract: Previous analyses of pattern search algorithms for unconstrained and linearly constrained minimization have focused on proving convergence of a subsequence of iterates to a limit point satisfying either directional or first-order necessary conditions for optimality, depending on the smoothness of the objective function in a neighborhood of the limit point. Even though pattern search methods require no derivative information, we are able to prove some limited directional second-order results. Although not as strong as classical second-order necessary conditions, these results are stronger than the first order conditions that many gradient-based methods satisfy. Under fairly mild conditions, we can eliminate from consideration all strict local maximizers and an entire class of saddle points.
منابع مشابه
Second-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain
Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction met...
متن کاملSecond-Order Convergence of Mesh-Adaptive Direct Search
Abstract: A previous analysis of second-order behavior of pattern search algorithms for unconstrained and linearly constrained minimization is extended to the more general class of mesh adaptive direct search (MADS) algorithms for general constrained optimization. Because of the ability of MADS to generate an asymptotically dense set of search directions, we are able to establish reasonable con...
متن کاملConvergence of Mesh Adaptive Direct Search to Second-Order Stationary Points
A previous analysis of second-order behavior of generalized pattern search algorithms for unconstrained and linearly constrained minimization is extended to the more general class of mesh adaptive direct search (MADS) algorithms for general constrained optimization. Because of the ability of MADS to generate an asymptotically dense set of search directions, we are able to establish reasonable c...
متن کاملSecond-Order Behavior of Pattern Search
Previous analyses of pattern search algorithms for unconstrained and linearly constrained minimization have focused on proving convergence of a subsequence of iterates to a limit point satisfying either directional or first-order necessary conditions for optimality, depending on the smoothness of the objective function in a neighborhood of the limit point. Even though pattern search methods req...
متن کاملAccuracy improvement of Best Scanline Search Algorithms for Object to Image Transformation of Linear Pushbroom Imagery
Unlike the frame type images, back-projection of ground points onto the 2D image space is not a straightforward process for the linear pushbroom imagery. In this type of images, best scanline search problem complicates image processing using Collinearity equation from computational point of view in order to achieve reliable exterior orientation parameters. In recent years, new best scanline sea...
متن کامل